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SUMMARY 
The development of a multigrid solution algorithm for the computation of three-dimensional laminar 
fully-elliptic incompressible flows is presented. The procedure utilizes a non-orthogonal collocated arrange- 
ment of the primitive variables in generalized curvilinear co-ordinates. The momentum and continuity 
equations are solved in a decoupled manner and a pressure-correction equation is used to update the 
pressures such that the fluxes at the cell faces satisfy local mass continuity. The convergence of the numerical 
solution is accelerated by the use of a Full Approximation Storage (FAS) multigrid technique. Numerical 
computations of the laminar flow in a 90" strongly curved pipe are performed for several finite-volume grids 
and Reynolds numbers to demonstrate the efficiency of the present numerical scheme. The rates of 
convergence, computational times, and multigrid performance indicators are reported for each case. Despite 
the additional computational overhead required in the restriction and prolongation phases of the multigrid 
cycling, the superior convergence of the present algorithm is shown to result in significantly reduced overall 
CPU times. 
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INTRODUCTION 

The numerical solution of the steady incompressible flow equations on general curvilinear grids 
has several complexities that must be carefully addressed. The differential equations on a general 
curvilinear grid contain far more terms than for a rectangular grid due to the presence of 
co-ordinate metrics. These additional terms significantly influence the performance of any 
solution procedure. Also, several different formulations of the momentum equations are feasible 
depending on which components of the velocity vector (covariant, contravariant, Cartesian) are 
chosen to be the dependent variables. This choice of dependent variables directly influences the 
pressure-velocity coupling and, therefore, the effective rate of convergence. Since the economical 
solution of industrial flow problems is a primary goal of computational fluid dynamics, the 
overall numerical procedure should be rapidly convergent. 

In developing the present numerical procedure, several staggered and non-staggered formula- 
tions of the momentum equations based on grid-oriented velocity components were con- 
sidered.14 Any numerical method for incompressible flow in curvilinear co-ordinates must 
address the issues of pressurevelocity coupling and curvature terms. Although covariant and 
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contravariant formulations possess strong pressure-velocity coupling, their implementation 
introduces curvature terms arising from the grid transformations. The presence of these terms 
precludes casting the equation set in conservation law form. Also, the geometric conservation law 
cannot be satisfied in a discrete manner when grid-oriented velocity components are used as the 
dependent variables5 Traditional staggering of the Cartesian velocity fields relative to the 
cell-centred pressure6 circumvents the problems associated with grid-sensitive curvature terms; 
however, for grid rotations of 90”, the beneficial effect of the grid staggering may be lost under 
certain conditions and decoupling of the pressure-velocity fields may O C C U ~ . ~  This decoupling can 
be overcome at the expense of storage and computational requirements by storing all three 
velocity components on each cell face.7 Staggered arrangements, especially for three-dimensional 
applications, are tedious to incorporate into a multigrid framework due to the necessity of 
maintaining several individual grids throughout the restriction and prolongation phases. 

The numerical formulation presented in this paper is based on a collocated arrangement of the 
Cartesian velocities in which the velocity components and the pressure are located at cell centres. 
Collocated arrangement of the primitive variablesa-” has some obvious advantages over stag- 
gered grids, especially when non-orthogonal co-ordinates are used for the simulation of complex 
geometries.1’ The equation set is concise since no curvature terms are present and the scheme is 
completely consistent throughout arbitrary grid rotations. Since all variables are located at the 
cell centres, only one set of control volumes is required, thereby simplifying the development of 
multi-dimensional flow solvers. The convection contribution to the coefficients in the discretized 
equations is the same for all variables which is especially attractive when elaborate differencing 
schemes are employed. Additionally, boundary conditions specification is simplified since the 
half-grid cells encountered in staggered schemes are circumvented. 

Collocated schemes offer additional advantages in a multigrid framework since only one set of 
control volumes requires restriction and prolongation operations. The use of the multigrid 
technique for accelerating the convergence of fluid flow calculations has been demonstrated by 
several researchers with dramatic reductions in computing times for a wide variety of numerical 
procedures and formulations. 12-” However, there has been relatively little research reported for 
multigrid solutions of incompressible flows based on a collocated arrangement of the primitive 
variables.’ a20 Furthermore, these works were limited to two-dimensional rectangular domains. 
Recently, Demirdzic et al.” reported multigrid solutions to incompressible flows using a collo- 
cated arrangement on a generalized two-dimensional non-orthogonal grid. Since the objective of 
their study was to provide benchmark solutions to several challenging flows, a detailed presenta- 
tion of the numerical implementation, the practices employed to make it successful, or a system- 
atic assessment of the performance of the algorithm was not provided. 

The objective of the present paper is to report the development and performance of a multigrid 
solution procedure for the computation of three-dimensional fully-elliptic incompressible flows on 
curvilinear collocated grids. A consistent multigrid formulation utilizing full cycling with nested 
iteration is presented as part of this effort. The following sections discuss the governing equations 
solved, detail the discretization of the governing equations, and describe the multigrid solution 
technique. The performance of the present algorithm for computing flows in strongly curved 
ducts is presented in later sections, followed by a summary of conclusions. 

GOVERNING EQUATIONS 

For a steady incompressible laminar flow in Cartesian co-ordinates, the conservation equations 
for mass and momentum may be expressed in conservative form as 
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The constitutive relations governing Newtonian fluids is assumed for the viscous shear stresses. 

(2) 

the partial differential equations describing continuity and momentum can be conveniently 
represented in strongly conservative form as a balance of convection, diffusion, and source terms 
by the single equation 

Considering a curvilinear co-ordinate system with 

5 = 5(x, Y ,  4; q = q(x, Y ,  4; 5 = U X ,  Y ,  4, 

+s+(5, q, OJ (3) 

where r4 is the diffusion coefficient and S4( <, q, c )  is the source term for the scalar variable 4. By 
appropriately specifying the diffusion coefficient and source term, the continuity and momentum 
equations can be recovered. For example, to recover the continuity equation, S4( 5, q, e )  is set to 
zero since there are no mass sources and the diffusion coefficient, r4, is set to zero. Introducing 
these values into equation (3) yields the following expression 
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are related to the Cartesian velocities by 

where the transformation matrix, A, is defined as 

a22 a23 = Y[zS-YtzC x<zC-xCzS. xrYc'-xc'Yt * (7) 1 [ 1:: a32 a 3 ]  [ Yt  z ,  - YsZ5 x,zt - XS =?I x, Y, - XSY c' 

al l  a12 a13 YqzC-YCzq xSzq-xqzC xqyt-xCyq 

The solution of these equations is subject to the prescription of well-posed boundary conditions 
as described in later sections. 

NUMERICAL PROCEDURE 

The governing equations are discretized by the finite-volume method and are solved in a de- 
coupled manner. A pressure-correction equation is used to update the cell-face fluxes such that 
local mass continuity is satisfied. The overall solution scheme presented in this section is similar 
to the popular SIMPLE algorithm22 with minor modifications to provide for adequate pres- 
sure-velocity coupling. 

Discretization 

The generalized transport equation (3) for a scalar quantity 4 can be integrated over each 
control volume in the computational domain (see Figure 1) for an arbitrary contravariant 

Figure 1. Typical control volume with arbitrary contravariant velocity distribution. W, has been omitted for clarity of 
presentation 
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velocity distribution as 

where 

S1 contains all cross-derivative terms and S2 contains the integrated pressure gradient terms. The 
mesh increments in the computational domain are defined to be unity. 

In the current version of the algorithm, the hybrid differencingz3 procedure is used for 
evaluating interface values of dependent variables. This discretization is known to be both stable 
and consistent with the governing  equation^.'^ Although hybrid differencing is second-order 
accurate when cell Reynolds numbers are less than two, its first-order accurate behavior at higher 
Reynolds numbers will introduce numerical diffusion. Other alternative s c h e r n e ~ ~ ~ * ~ ~  offer 
formally better accuracy, however, experience has shown that they can be slow to converge and 
can generate over- and under-shoots in the transport variables.26 Hybrid differencing has been 
used here because it offers an acceptable balance of consistency, accuracy, stability,and conver- 
gence. 

After linearizing the governing equations by lagging the coefficients, the discretized transport 
equation can be written in the conventional algebraic form 

where 4 n b  are the neighbour values of 4p  on a seven-point stencil and Sb is the corresponding 
total source term. The cross-derivative diffusion fluxes are treated explicitly by incorporating 
them into the source term of the discretized equation. 

Pressure-velocity coupling 

The key feature in collocated schemes for incompressible flows is the appropriate evaluation of 
cell-face velocity and pressure. In the context of a finite-volume discretization of the governing 
equations, values of cell-face velocity and pressure must be expressed in terms of the surrounding 
cell-centre quantities. When linear interpolation between cell centres is employed, the result is 
a discrete set of equations in which no dependence exists between adjacent cell-centre velocities 
and pressures. The ramification is that physically implausible velocity and pressure fields may 
satisfy the discrete equations.” The classical solution to this odd-even splitting is to use 
a staggered grid.6 By staggering the control volumes, a dependence between adjacent values of 
velocity and pressure is obtained. 

The resolution of the odd-even splitting phenomenon can be accomplished with the use of 
non-staggered grids. Recent solution procedures employing collocated grids incorporate grid 
staggering implicitly through a procedure which has been referred to as pressure weighted 
interpolation2’ or momentum interpolation.” These methods lead to well connected pres- 
sure-velocity fields in which adjacent values of velocity and pressure depend explicitly on one 
another. 

In the present solution procedure, the method of Majumdar et al.’’ has been used to determine 
the cell-face values of the convective flux. This method was chosen in place of other collocated 
grid techniques because the converged solution is independent of the relaxation parameter.” In 
this formulation, values of the Cartesian velocities at the cell faces are written in terms of the 
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interpolated discretize equations for the adjacent cell-centre velocities. For example, if a staggered 
grid was being used, the east-face values u,, u, ,  and we would be written as 

where A,=ZAnb/ci, and SU(& tf, C), S"(t, tf, c), and Sw(<, tf, () are source terms which do not 
include the pressure gradients. Since a collocated grid is being considered here, quantities such as 
A, and %lnbUnb are not known at the cell faces. In the present method, a linear interpolation of 
the surrounding cell-centre values is employed to determine these. quantities. Only those terms 
surrounded by braces are interpolated. It is important to note that the pressure and relaxation 
terms are not interpolated. 

The east cell-face contravariant velocity in terms of u,, u, ,  and we is given by the following 
expression 

ue=all %+a12 V e + a 1 3  we (12) 

where al l ,  a12, and a 1 3  have been calculated at the east cell-face. With the interpolation of the 
various terms in u,, u,, and we included, the east cell-face contravariant velocity can now be 
expressed in terms of cell-centre quantities as follows: 

+ al (1 - o) u:ld + a 2( 1 - o) u:ld + a 13 (1 - w) w :Id (13) 
where the braces serve to indicate that a linear interpolation has been used to obtain that 
quantity. The expressions for U,, V,,  V,, etc. follow a similar logic. 

If the terms involving u,, u, ,  and we in the above expression are grouped together, the resulting 
expression for U, shows that it will be independent of the relaxation parameter when a converged 
solution is obtained. For U,, the discretization of a P / a t  reveals the implicit grid staggering 
involved in the momentum interpolation procedure." The expression for the cell-face mass flux, 
when substituted into the continuity equation to obtain a pressure-correction equation, results in 
dependence between adjacent values of pressure. The problem of odd-even splitting is thus 
avoided. Details of the implementation of this procedure for two-dimensional complex geomet- 
ries can be found in Cope.30 

Pressure-correction equation 

The derivation of the pressure-correction equation follows the perturbation concept intro- 
duced by Patankar" in which the velocities and pressure are written as the sum of their estimated 
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values and a suitable correction. The pressure-correction equation takes the form 

where the first summation includes the terms from the staggered pressure differences and the 
second summation includes the farther-than-neighbour values at ( i+  1,j- 1, k), (i- 1,j- 1, k), etc. 
The superscript p designates the coefficients of the pressure-correction equation. Based on the 
recommendations of P e r i ~ , ~ ’  the pressure gradients along the cell face resulting from the non- 
orthogonality of the grid lines were neglected when smoothing the pressure-correction equation 
since the non-orthogonality in the present study was not severe. For highly non-orthogonal 
meshes, the second summation in equation (14) is included and is treated explicitly during the 
solution of p‘. The present method exhibits the best performance for geometries involving nearly 
orthogonal grids since the cross-derivative terms are lagged. The pressure-correction equation is 
swept by treating the first summation implicitly and iteratively solving the p’ equation on a seven 
point stencil. 

Integral mass flow adjustments 

The convergence of the present numerical procedure can be considerably accelerated by forcing 
the total mass flow rate through any given cross-sectional plane to equal the known mass-flow 
rate. This correction is similar to the block adjustments performed in the SIMPLE technique. In 
the present implementation, the inflow and outflow cell-face fluxes are scaled to reflect the known 
mass flow rate. When the flow velocities are corrected, it is also necessary to correct the 
downstream pressure field to reflect the implied correction in the pressure gradient. 

Smoothing opera tor 

A vectorized alternating line Jacobi routine was employed to smooth all equation sets. In this 
solver, Gauss-Seidel marching was used between planes. Within a plane, direct inversion was 
performed in one direction with a Jacobi-like marching in the other direction. The Jacobi 
marching procedure eliminates interdependencies which would preclude vectorization. After one 
iteration of the entire flow field using inversion in the streamwise direction, inversions in the 
spanwise and transverse directions were performed in succession. The alternating line Jacobi 
solver used in the present study did not employ any explicit damping. All relaxation was 
performed implicitly through the discrete equations. A scalar version of a strongly implicit 
procedure3’ was initially used in this study, but it was not found to be computationally 
competitive with the alternating line Jacobi routine. 

MULTIGRID PROCEDURE 

Multigrid concept 

Multigrid methods3’ continue to receive increased attention in the computational fluid 
dynamics community because of two desirable characteristics: the number of iterations is ideally 
independent of the number of grid cells and many problems exhibit an O(n) computational effort 
as opposed to the O(n2)  computational effort of standard single-grid iterative solvers.*” Tradi- 
tional single-grid iterative solvers are efficient in annihilating errors with wavelengths comparable 
to the mesh size, but their convergence for low-frequency errors is slow. Unfortunately, these 
low-frequency modes dominate the solution error after the first several iterations making each 
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successive iteration less p r o d ~ c t i v e . ~ ~  In multigrid methods, a flow problem that is discretized on 
a given fine grid is efficiently solved by removing the persistent low-frequency errors through 
a series of coarse grids. 

The utilization of auxiliary coarse grids serves two crucial functions in the multigrid approach. 
First, solutions generated on coarser grids can be extrapolated to the subsequent finer grid 
providing a better initial solution for the iterations on the finer grid. Second, the smooth 
components of the solution error, which are slow to be removed in an iterative manner, appear as 
high-frequency components when restricted onto a coarser grid. Several sweeps on the coarsened 
grid will remove the fine-grid low-frequency errors efficiently before prolongating the solution 
back to the finer grid. The superior convergence rate on the finest grid results in greatly reduced 
overall CPU times, despite the computational overhead involved in the multigrid cycling. 

In the present study, the Full Approximation Storage (FAS) algorithm33 has been combined 
with Full Multi-Grid (FMG) cycling to smooth the equation set. FMG-FAS cycling has been 
shown to provide the best convergence properties for a segregated solution of the Navier-Stokes 
 equation^,^' especially in the presence of strongly non-linear source terms." The solution 
procedure is initiated on the coarsest grid and subsequent initial solutions on finer grids are 
obtained by interpolating converged solutions of the adjacent coarser grid. 

The equation set on the finest grid (k) can be written as 

L ~ w ~ = F ~ .  (1 5 )  
Here, L is the non-linear operator consisting of convection and diffusion terms, w is the 

solution vector, and F represents the source terms. In the FAS procedure, the values calculated on 
a coarser grid (k-1) are not simple corrections to the values on grid (k), instead they are 
approximations on grid (k - 1) to the correct values on grid (k). Therefore, the equations solved on 
grid ( k -  1) are 

Lk- 1 w k -  1 = F k -  1 + 1:- 1 ( ~ k  - ~ k ~ k )  + ( ~ k -  1 z k -  k 1 W k  - p -  1 

where Z:-l is the restriction operator. Alternately, 
correction to wk is then calculated as 

1 (16) 
is the prolongation operator. The 

W few = w:,d + z: - 1 (wk - - zk -  k 1 wold 1. (17) 
Note that only the change from the previous value ( ~ ~ - ' - 1 ~ - ~ w ~ ~ d )  is prolongated to grid 

k and not the value wk-l  itself. The advantage of using FAS over the Correction Scheme33 is that 
the solution vector from the fine grid, and not just the residuals are transferred to the coarser 
grids. Additionally, if multiple iterations are performed on a coarse grid, the non-linear operator 
and the source terms are continuously updated. 

The grid iterations can be arranged in a variety of ways which affect the overall rate of 
convergence. The fixed cycle is preferred here over an adaptive cycling strategy since it is not 
always possible to assign an optimal smoothing rate as is required in an adaptive strategy. The 
present study employs a fixed (v l ,  v2) V-cycle with v l  iterations during the downward leg and 
v 2  iterations during the upward leg. 

Treatment of coarse-grid mass fluxes 

Consistent evaluation of the coarse-grid mass fluxes has been observed to be the most 
important issue in the present collocated multigrid procedure. If the coarse-grid cell-face fluxes 
are not properly updated after the momentum equations are solved, a limiting mass residual will 
result. Three different practices for evaluating these coarse-grid fluxes were considered in the 
present study. 
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The first method used to determine the coarse-grid mass fluxes involved the restriction of 
Cartesian velocities and pressure. The coarse-grid cell-face contravariant velocities were sub- 
sequently calculated from 

where U is the contravariant velocity vector, u is the Cartesian velocity vector obtained from 
momentum interpolation, and [ A l k -  is the coarse-grid transformation matrix. It was observed 
that the first 10-15 iterations on the finest grid were consistent with a multigrid rate of 
convergence. The performance subsequently deteriorated to the point that no convergence was 
obtained below approximately 10 per cent normalized mass residual. This behaviour is attribu- 
table to a mass imbalance which exists between the coarse and fine grids when using this method. 

The mass imbalance is present due to the fact that the fine;grid Cartesian velocities are not 
required to satisfy mass con~ervation.~' Rather, it is the fine-grid cell-face fluxes based on the 
momentum interpolation procedure which satisfy the continuity constraint. When coarse-grid 
mass fluxes are calculated based on restricted Cartesian velocities from the fine grid, an inconsist- 
ency results. This inconsistency between fine and coarse-grid fluxes can be avoided by restricting 
the fine-grid fluxes to the coarse grid and making corrections to these restricted fine-grid fluxes at 
the coarse-grid level. The restricted fine-grid fluxes are only corrected on the coarse grid. The 
coarse-grid fluxes are never calculated based on the coarse-grid Cartesian velocities. To do so 
would erase the mass flux information which came down from the fine grid during restriction. 

In order to resolve the observed inconsistency, a second method for calculating the coarse-grid 
mass fluxes was utilized. The second method involved a procedure identical to the previous 
method except for one important difference. The mass residual error between the fine-grid and 
coarse-grid fluxes was placed into the source term of the coarse-grid continuity equation. The 
mass residual error was calculated from 

Ijt,,,idual=AUe-AUw+AV~-AVs+AWh-AW, (19) 

The effect of the mass residual error was to drive the pressure corrections to remove the 
inter-grid mass imbalance. It was observed that a limiting mass residual of approximately 2 per 
cent still existed when this method was used. 

In the present multigrid method, the coarse-grid mass fluxes are obtained by restricting the 
fine-grid fluxes to the coarse grid. The cell-face mass fluxes are calculated based on corrections to 
the restricted fine-grid fluxes, 

In this relation, the Cartesian velocity corrections are first calculated at the cell centres and 
then determined at the cell faces using momentum interpolation. The use of this method was 
observed to remove the mass inconsistency between fine and coarse grids. 

Restrictionlprolongation for  curvilinear grids 

Consistent transfer of residuals and solutions is a major aspect of any multigrid-based 
algorithm. For solution of the flow equations on curvilinear meshes, consistent restriction of the 
metrics in the governing equations is also found to be necessary. Two approaches to compute the 
coarse-grid transformation metrics are available: the coarse-grid metrics may be computed from 
the co-ordinates of the coarse-grid vertices, or the coarse-grid metrics can be a restriction of the 
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fine-grid metrics. The former produces metrics that do not imply the same cell-face areas and 
volumes as the combined values of the fine grid. In this study, improved multigrid convergence 
was obtained when the metrics on the coarse grids are themselves obtained by restricting the 
values from the adjacent finer grid. 

In the present algorithm, cell-centre quantities are restricted using full weighting of neighbour 
values. Restriction of residuals and cell-face fluxes is performed by summation. Corrections are 
prolongated by trilinear interpolation. 

Non-Dirichlet boundary conditions 

The treatment of non-Dirichlet boundary conditions, such as symmetry planes and zero- 
derivative outflow planes, was performed as recommended by Vanka.36 When a coarse grid is 
reached through restriction from a finer grid, it is necessary to account for the fact that the 
equations actually solved are different from the original flow equations because of the presence of 
additional restricted residuals. 

TEST CALCULATIONS 

General 

Prior to this investigation, a detailed confirmation of the overall code, particularly the 
discretization consistency, was successfully performed for several model  problem^.^' Because the 
emphasis in this study is concentrated on the implementation of a numerical procedure in 
a multigrid framework, comparisons of computed and experimental results are not made here. 
The validity of the code has been thoroughly documented elsewhere for curved duct flows in 
which benchmark quality experimental data are available.37* 3 8  

In this study, the laminar flow within a strongly curved 90" pipe bend is considered. The 
geometry consisted of a one diameter long approach tangent, the bend itself, and a two diameter 
long exit tangent. The approach tangent was included to account for any elliptic effects which 
might propagate upstream, while the downstream tangent was included to capture the decay of 
streamwise vorticity. The radius of curvature was set at 1.5 diameters. This geometry was selected 
because curved duct flows present several computational challenges inherent to practical engin- 
eering flows: a severe grid rotation, the possibility of localized axial recirculation, and strongly 
three-dimensional character. Furthermore, the present test case contains an additional challenge 
in that the location of the separation point is not fixed as in a sudden expansion flow. 

For this configuration, three Reynolds numbers (based on the diameter and bulk velocity) of 
500,1000, and 2000 were considered. The lowest Reynolds number corresponded to a completely 
attached flow, while the highest Reynolds number flow was characterized by a strongly separated 
region in the bend. By using this range of Reynolds numbers, the performance characteristics of 
the algorithm could be assessed for partially-parabolic, weakly-separated, and fully-elliptic flows. 
For each Reynolds number, four finite-difference grids were considered to investigate the effect of 
grid refinement on the rate of convergence. 

Because of symmetry about the central plane, only one half of the flow domain was solved. 
Initial velocity fields were specified as plug distributions for streamwise velocity and zero 
secondary circulation. The inlet boundary condition was a fully-developed Poiseuille velocity 
profile and an extrapolative zero-derivative outflow boundary condition was employed at the exit 
of the computational domain. In all cases, precautions were taken to ensure that any separated 
region did not extend to the outflow boundary. The streamwise and cross-sectional nodes of each 
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grid were distributed uniformly. A representative grid, computed using an elliptic procedure, is 
presented in Figure 2. The selected grid is fairly smooth, nearly orthogonal, and devoid of sudden 
changes in mesh size. 

The convergence criterion was based on the summed average residual of the four equations 
defined as 

(22) I R I = [ ((R")' + (R")2 + (R")' + (R')2}/4]"2 

where the summation is made over all cells. R", R", R", and R' are point residuals (per unit cell 
volume) in the momentum and continuity equations normalized by inlet momentum and inlet 
mass as appropriate. A solution was considered to be adequately converged when the initial 
residual had been reduced by four orders of magnitude. Relaxation parameters for all grids and 
all Reynolds numbers were fixed at 

c1,=uu=aw=O*6; u,=0-2. (23) 
The multigrid cycling for each case contained four grid levels which were traversed using a fixed 

(1, 1) V-cycle with full coarsening. Each inner iteration is composed of one sweep on the 
momentum equations followed by five sweeps on the pressure-correction equation. 

Frequent comparisons are made in this study between the relative performance of the present 
algorithm in single-grid and multigrid modes. In order to provide a uniform measure of 
computational effort, a Work Unit (WU) is defined here as one traditional single-grid iteration on 
the finest grid. All reported timings are actual CPU times in seconds on a CRAY-2 supercom- 
puter. 

Figure 2. Representative computational grid for curved pipe simulation 
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Re = 500, results 

As mentioned previously, no axial recirculation was observed for a Reynolds number of 500. 
Table I presents the results of several calculations of this flow using the same computer code in 
both Multi-Grid (MG) and Single-Grid (SG) modes. Clearly, the multigrid approach dramati- 
cally reduces the overall CPU times. The speedup over a traditional single-grid solver is observed 
to increase with grid refinement making the present multigrid procedure especially attractive for 
calculations involving fine grids. Although there was a small increase in the number of work units 
required for convergence as the grid was refined, the multigrid solution is still observed to be very 
economical. Single-grid calculations for the 120 x 64 x 40 cell case were terminated prior to 
convergence since the estimated computing times would have been excessive. 

Figure 3 presents the convergence histories of the various grids in the FMG cycling. Grid 1, the 
coarsest grid, is seen to possess the least satisfactory convergence due to the simplicity of the 
initial velocity field. Grid 1 converges in 53 iterations at which time the solution is prolonged to 
Grid 2 and the multigrid cycling begins. This convergence and prolongation pattern is repeated 
for Grid 3 and Grid 4. Figure 3 illustrates that the algorithm is rapidly convergent on all the grids 
considered. 

Table I. Convergence details for curved pipe flow, Re = 500 

Grid MG SG CPU time Fine grid MG SG 
CPU time CPU time speed-up iterations work work 

6) (4 units units 

48 x 24 x 16 7 6  1 120.8 1.59 40 59 154 
72 x 32 x 24 245.1 551.6 2.25 44 64 252 
96 x48 x 32 546.9 2262.8 4.14 46 66 41 1 

120 x 64 x 40 1232.2 61450* 4.99* 49 I0 750* 

* Estimated 

100 

lo-' 

lo-* 

10-3 

10' 

-30 x 16 x 10 Grid 
43-60 x 32 x 20 Grid 

I I I I I I I I I I 

0 10 20 30 40 50 60 70 80 90 100 

Iteration Number 
Figure 3. Convergence history for curved pipe flow, Re = 500 
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Figure 4 presents a comparison of the multigrid and single-grid convergence for the 
120 x 64 x 40 cell calculation. For the multigrid solution, the nested iteration phase requires 
approximately 8 work units. The multigrid procedure achieves final convergence in approx- 
imately 70 work units; however, over the same number of work units, the single-grid approach is 
seen to be very sluggish in reducing the initial residual. 

Re = 1000, results 

At a Reynolds number of 1000, the flow experiences a small separation within the first few 
degrees of the bend inlet. The separated region appears at the outer wall reaching a maximum 
backflow magnitude of 11 per cent of the bulk velocity at a bend angle of 22.5". Table 11 presents 
performance indicators of the present algorithm for this flow. As seen in the Re = 500 case above, 
the speedup over a single-grid approach is again significant, although the speedup magnitudes are 
slightly less than the Re= 500 values for the respective grids. The increased non-linearity of this 
weakly separated flow is believed to be responsible for this reduced performance. The computa- 
tional economy of the present multigrid method is again demonstrated by requiring only 77 work 
units to achieve a converged solution for the finest grid. This compares dramatically with the 
estimated 785 work units required by a single-grid strategy for the same flow. 

1 o4 

10-5 t I I I I I I I I I I 

0 10 20 30 40 50 60 70 80 90 100 

Work Units 

Figure 4. Multigrid and single-grid convergence history for curved pipe flow, Re = 500 

Table 11. Convergence details for curved pipe flow, Re= lo00 

Grid MG SG CPU time Fine grid MG SG 
CPU time CPU time speed-up iterations work work 

(s) (s) units units 

48 x 2 4 x  16 80.3 123.4 1.54 45 66 155 
72 x 32 x 2 4  277.8 587.2 2.1 1 50 72 249 
9 6 x 4 8 ~ 3 2  595.8 221 1.7 3.7 1 52 75 408 

120 x 64 x 40 1461.8 6565.0* 4.49* 54 77 785* 

Estimated 
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The convergence history of the FMG cycle for the 120 x 64 x 40 grid calculation is presented in 
Figure 5.  As before, the convergence on all but the initial (coarsest) grid is seen to maintain 
a log-linear rate. Figure 6 illustrates the convergence performance of the present algorithm in 
both the multigrid and single-grid modes. The multigrid method is seen to converge rapidly, while 
the single-grid technique appears to be converging quite slowly. 

Re = 2000, results 

Of the three flows considered in this study, the final flow presents the most serious challenge to 
the present algorithm's ability to compute practical engineering flows. At a Reynolds number of 
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Figure 5. Convergence history for curved pipe flow, Rc.= lo00 
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Multigrid and single-grid convergence history for curved pipe flow, Re = loo0 
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2000, the flow possesses a large separated region with a maximum backflow magnitude of 27.3 per 
cent of the bulk velocity at a bend angle of 20". Table I11 presents performance indicators for this 
test case over a range of finite-volume grids. The speedups over a single-grid approach are still 
significant, but when considering the data from Tables I and 11, there is a pattern of decaying 
speedups with increasing Reynolds number. The present multigrid method was able to achieve 
a fully-converged solution in less than 30 CPU min. An identical simulation using a single-grid 
approach was estimated to require nearly 2 CPU h. The data of Table I11 also indicate that the 
MG work units required for convergence increased appreciably as the cell density was increased. 
Better resolution within the separated region may be responsible for the increased MG work 
count as the finite-volume grids were refined. 

Figure 7 presents the convergence history of the 4 level FMG cycle for the 120 x 64 x 40 
calculation. The four grids converge to a good accuracy essentially at  the same rate. Each level in 
the nested iteration phase typically required only 55 iterations. The algorithm maintains strong 
convergence on all grids, even at this higher Reynolds number. Figure 8 illustrates the superior 
convergence of the multigrid cycling over an identical single-grid procedure for this Reynolds 
number. It is interesting to note that the 10 work units contained in the initial nested iteration 
accomplish approximately the same residua! reduction as the 100 work units expended on 
a single-grid calculation. 

Table TIT. Convergence details for curved pipe flow, Re = 2000 

Grid MG SG CPU time Fine grid MG SG 
CPU time CPU time speed-up iterations work work 

(4 6) units units 

48 x 2 4 x  16 94.5 126.4 1.34 52 75 I57 
12 x 32 x 24 304.5 600.2 1.97 58 83 255 
96 x48 x 32 104.8 246 1.2 349 60 86 429 

120 x 64 x 40 1687.1 6 8 50.0* 4.06* 66 95 810* 

* Estimated 
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Figure 7. Convergence history for curved pipe flow, Re = 2000 



902 K. M. SMITH. W. K. COPE AND S. P. VANKA 

-0 w 
3 
.C( 

€ 

1$ 

10' 

1 0 2  

1 o - ~  

lo4 

1 oS5 
0 10 20 30 40 50 60 70 80 90 100 

Work Units 

Figure 8. Multigrid and single-grid convergence history for curved pipe. flow, Re=2000 
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Figure 9. Effect of grid refinement on multigrid solution time 

Figure 9 presents the effect of grid refinement on CPU times for all three of the Reynolds 
numbers considered in the present study. From Figure 9, it can be seen that the CPU time 
increases almost linearly with the number of grid nodes. This confirms the attractive feature of the 
multigrid technique. The absolute CPU time, however, increases with Reynolds number, as 
a result of the increased non-linearity. The present multigrid formulation approaches on O(n) 
work count; however, the problem complexity may be responsible for not achieving this ideal 
multigrid efficiency. It may be possible to attain an O(n) work count by tailoring the relaxation 
and grid cycling parameters on a case by case basis. 
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CONCLUSIONS 

In this study, we have presented the development and performance of a multigrid-based algo- 
rithm for the solution of the steady incompressible Navier-Stokes equations. The algorithm 
solves the momentum equations for the Cartesian velocities as the dependent variables and stores 
all variables a t  the cell centres. In all cases, rapid convergence from initially guessed simplistic 
distributions has been obtained. This study demonstrates that multigrid techniques for a collo- 
cated arrangement of the primitive variables show promise for efficiently solving multi-dimen- 
sional fluid flows of practical relevance. Future research efforts are concentrated on the incorp- 
oration of turbulence modeling and higher-order discretizations for the governing equations. 
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